# Timing of CAMP magmatism in Eastern North America: Potential for Causing the Tr-J Boundary Extinction

J. Gregory McHone, Geosciences Program, University of Connecticut

The mass extinction at the Tr-J boundary is one of the "big five" catastrophes of Phanerozoic time. Evidence for a coinciding bolide impact remains poor, and the best candidate for causing the extinction is high-volume fissure volcanism of the Central Atlantic Magmatic Province (CAMP). Unfortunately, the huge lava flows of quartz tholeiite in basins across the northern part of the CAMP appear to post-date the extinction horizon by as much as 20,000 years (Olsen, 1997), at least in northeastern North America. However, field aspects of olivine dolerite sills and dikes in the southern USA indicate an age slightly older than the northern basalts, which allows an overlap in time with the boundary extinction.

The earliest event of dike intrusions with fissure volcanism in the northern basins created large sills such as West Rock in Connecticut and the Palisades Sill in New Jersey. Hydrothermal effects of the intrusions led to physical changes of the basin strata, so that subsequent dike generations did not form sills. In North Carolina, the Durham Sill was formed from olivine tholeiite, and so that magma type must be older than non-sill-forming quartz dolerite dikes that also cut its basin. Rare cross-cutting relationships of dikes also show that olivine dolerites are older than the quartz type. Intervals between volcanic events in the northern basins were about 200,000 years or less, and so southern volcanism of olivine tholeiite probably occurred near the end of the Triassic Period, not in the earliest Jurassic. Extensive lava flows of this type still exist in basins buried under the southern coastal plain.

Sulfur in the olivine dolerite dikes and sills averages 0.067 % by weight, which is twice as high as the younger quartz dolerite average. At least 20,000 km<sup>3</sup> of olivine basalt (possibly much more) was extruded across 100,000 km<sup>2</sup> or more of the southern rift basins during this event of fissure volcanism. This is more than a thousand times larger than the Laki fissure eruption of 1783-1784, in which sulfur aerosols cooled the northern hemisphere about 1° C and caused crop failures and famine. The southern CAMP olivine basalts had the size, location, timing, and emissions to cause the mass extinction at the Tr-J boundary.

#### Did CAMP volcanism of olivine basalt (LTi) magmas cause the Tr-J mass extinction? Arguments and evidence:

| 1. | Location and volume of LTi magmatism:                          |
|----|----------------------------------------------------------------|
|    | a. mainly southern USA, in central Pangaea close to the $\Box$ |
|    | equator, covering at least 100,000 sq km.                      |
|    | b. about 20,000 cubic km present today, probably much □        |
|    | more when it formed.                                           |
|    |                                                                |

a. wide zone of NW-SE dikes of low-Ti (LTi) high-Mg olivine 🗆 basalts, overlapped by a narrower N-S swarm of intermediate-Ti (ITi) quartz tholeiitic dikes.

#### 3. Timing of LTi magmatism relative to the Tr-J boundary: a. Ar dates indicate 199 Ma, within error for northern ages. b. sills of olivine basalt in the south indicate LTi magmatism

# 4. Volatile composition of LTi magmas, and estimates of

predates northern ITi quartz tholeiite.

a. wt. %:  $CO_2 = 0.091$ ; S = 0.067; F = 0.023; CI = 0.030 b. metric tons: 5.31 x10<sup>10</sup> basalt; 4.832 x 10<sup>7</sup> CO2;  $\square$  3.558 x10<sup>7</sup> S; 1.173 x10<sup>7</sup> F; 1.593 x10<sup>7</sup> Cl

#### 5. Killing mechanisms:

□ a. initial cooling from sulfuric fog of 10 degrees C for years. a. subsequent heating from CO<sub>2</sub> of 10 degrees for millennia.

### 6. Additional research needed:

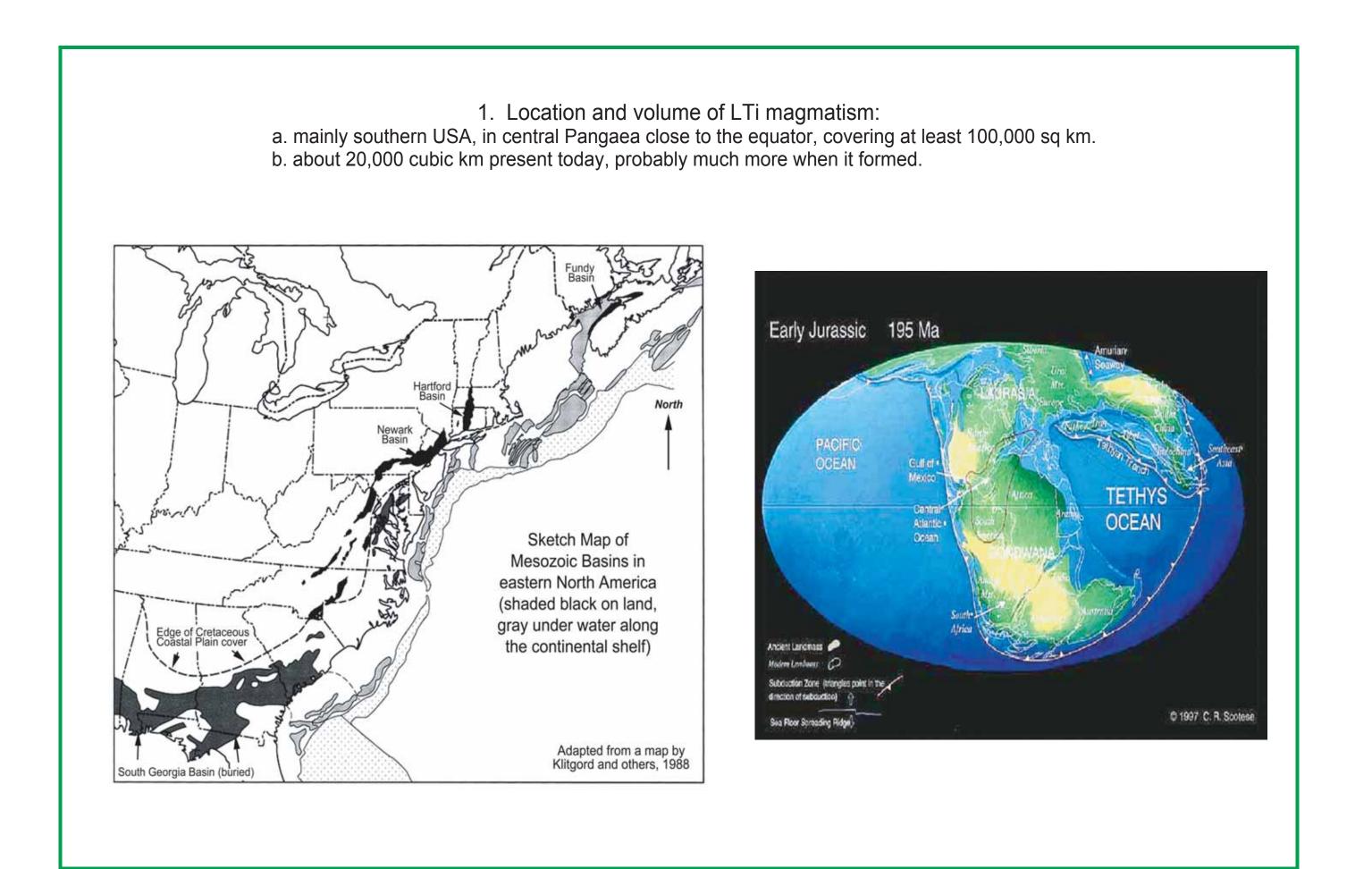
a. more precise dates, such as by U-Pb analysis of zircons. □ b. mapping of basalt flows buried beneath the coastal plain. □ c. better correlations of buried basalts with exposed dikes.

# Early Jurassic Basalts of the Central Atlantic Magmatic Province Continental Margin ••• Province Boundary (?) Area of Present-Day Basaltic Lavas or Sills N.E. USA **AFRICA** Area of High-Mg 0 250 500 750 Kilometers Yucatan / SOUTH AMERICA

# Table 4: Flood Basalt Provinces of the last 250 Ma (modified from Rampino and Self, 1990)

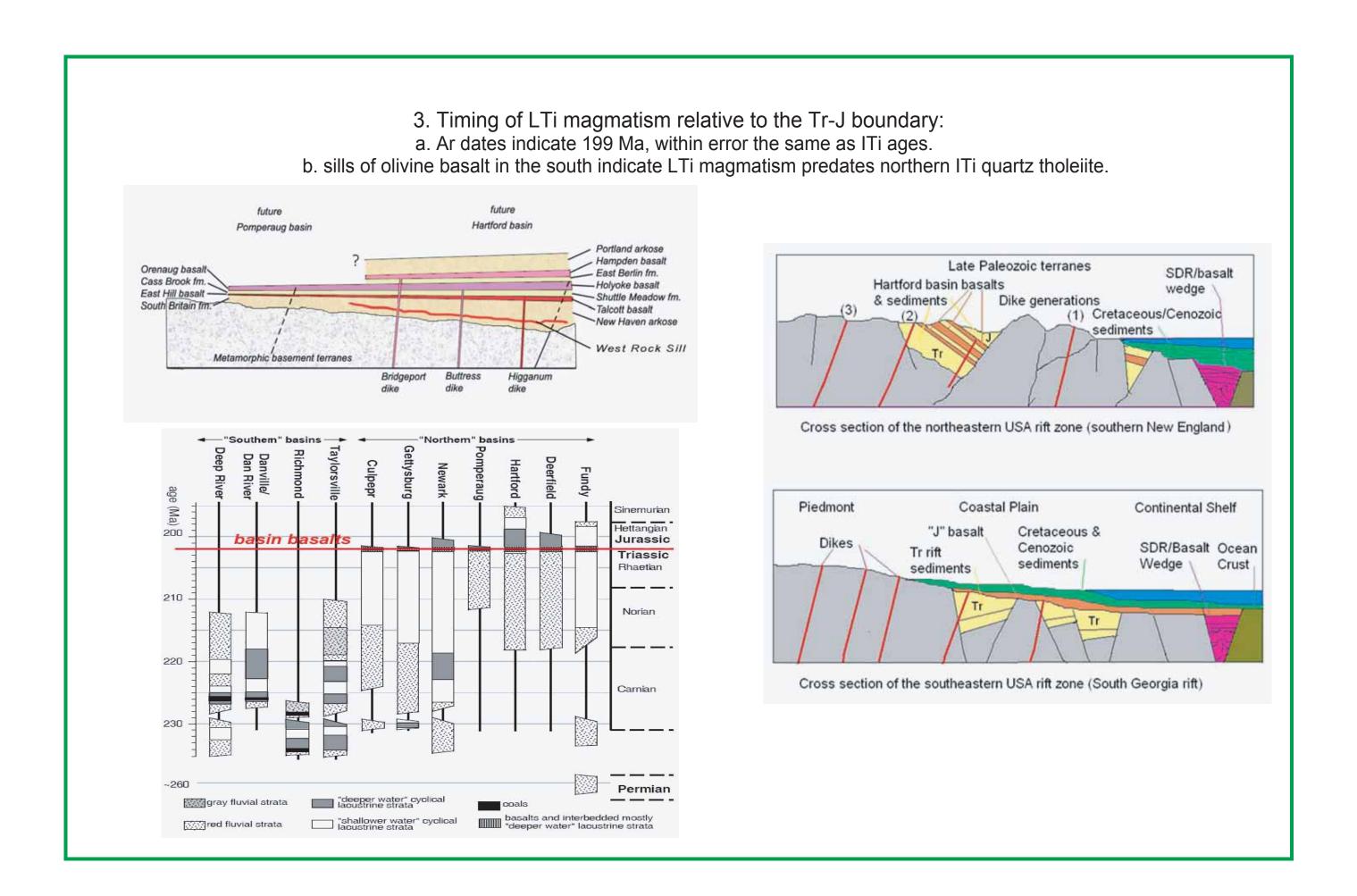
| Province             | Age (Ma)    | Vol. $(10^6  \text{km}^3)$ | Paleo-latitude | Duration (Ma) |
|----------------------|-------------|----------------------------|----------------|---------------|
| Columbia River       | 16 ± 1      | 0.25                       | 45°N           | ~ 1 (for 90%) |
| Ethiopia             | 31 ± 1      | ~ 1.0                      | 10°N           | ~ 1           |
| North Atlantic       | 57 ± 1      | >1.0                       | 65°N           | ~ 1           |
| Deccan               | 66 ± 1      | >2.0                       | 20°S           | ~ 1           |
| Madagascar           | 88 ± 1      | ?                          | 45°S           | ~ 6?          |
| Rajmahal             | 116 ± 1     | ?                          | 50°S           | ~ 2           |
| Serra Geral/Etendeka | 132 ± 1     | >1.0                       | 40°S           | ~ 1 or ~ 5?   |
| Antarctica           | 176 ± 1     | >0.5                       | 50-60°S        | ~ 1?          |
| Karoo                | $183 \pm 1$ | >2.0                       | 45°S           | 0.5 - 1       |
| CAMP                 | 200 ± 1     | >2.4?                      | 10°S - 30°N    | ~ 0.6         |
| Sibarian             | 240 + 1     | >2.0                       | 45°N9          | s. 1          |

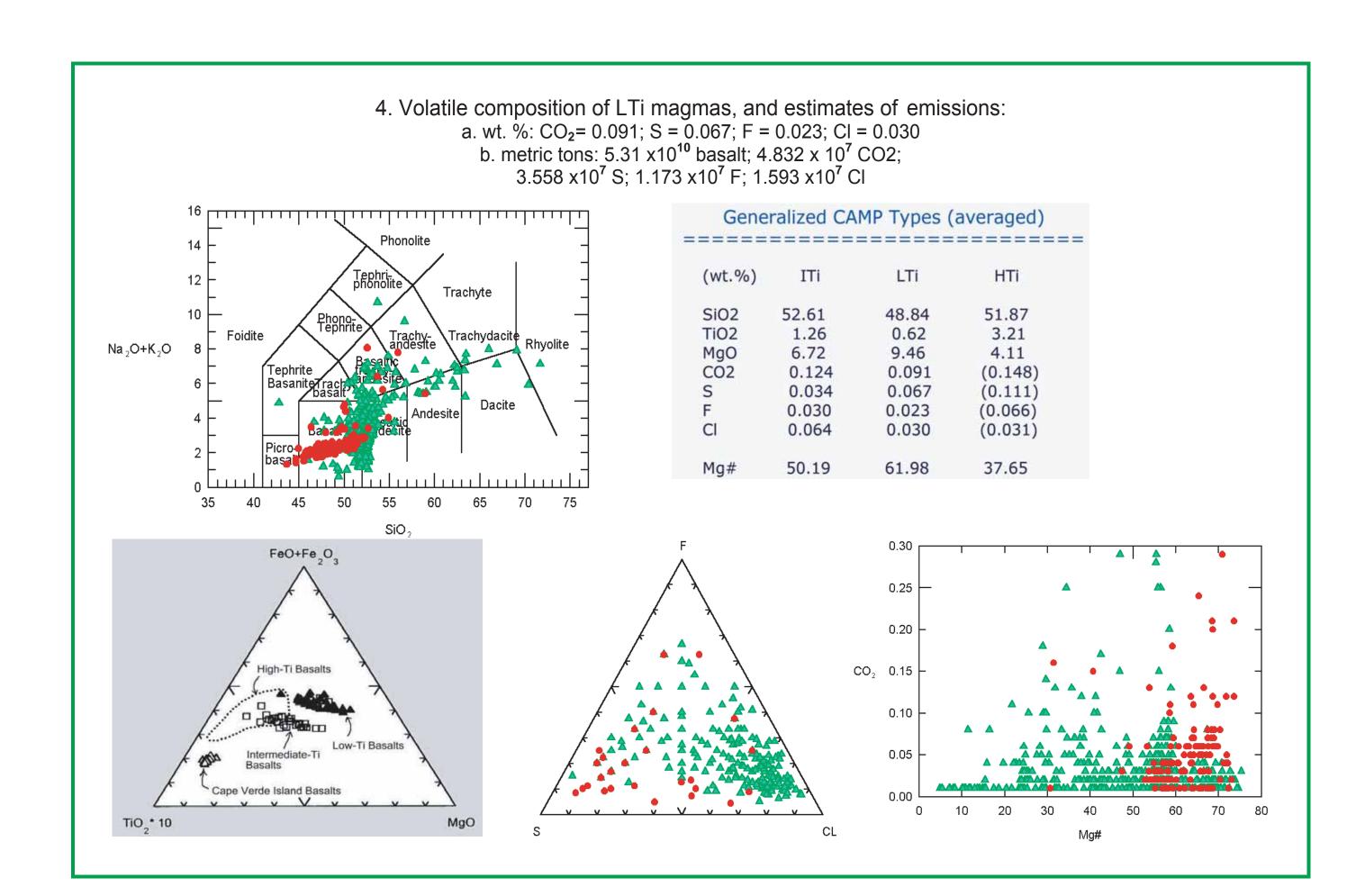
|                   | LTi   |       |     | ITi   |       |     | HTi     |      |    | Laki  | Roza  |
|-------------------|-------|-------|-----|-------|-------|-----|---------|------|----|-------|-------|
|                   | Mean  | s.d.  | n   | Mean  | s.d.  | n   | Mean    | s.d. | n  | glass | dikes |
| SiO <sub>2</sub>  | 48.84 | 2.27  | 142 | 52.61 | 2.54  | 574 | 51.87   | 2.04 | 60 | 49.68 | 51.45 |
| $TiO_2$           | 0.62  | 0.29  | 142 | 1.26  | 0.62  | 574 | 3.21    | 0.48 | 60 | 2.96  | 3.40  |
| $Al_2O_3$         | 16.06 | 1.67  | 142 | 14.06 | 1.62  | 574 | 14.32   | 1.27 | 60 | 13.05 | 12.80 |
| FeO*              | 9.92  | 1.08  | 142 | 10.73 | 1.93  | 627 | 12.14   | 1.65 | 60 | 13.78 | 14.46 |
| MnO               | 0.16  | 0.05  | 142 | 0.18  | 0.03  | 574 | 0.19    | 0.02 | 60 | 0.22  | 0.25  |
| MgO               | 9.46  | 2.44  | 130 | 6.72  | 3.13  | 574 | 4.11    | 1.16 | 60 | 5.78  | 4.07  |
| CaO               | 10.92 | 1.30  | 142 | 9.92  | 2.11  | 604 | 7.64    | 1.09 | 60 | 10.45 | 8.32  |
| Na <sub>2</sub> O | 2.07  | 0.46  | 142 | 2.44  | 0.90  | 627 | 2.87    | 0.38 | 60 | 2.84  | 2.73  |
| $K_2O$            | 0.46  | 0.62  | 142 | 0.83  | 0.64  | 574 | 1.65    | 0.56 | 60 | 0.42  | 1.36  |
| $P_2O_5$          | 0.10  | 0.08  | 142 | 0.17  | 0.11  | 574 | 0.58    | 0.19 | 60 | 0.28  | 0.75  |
| $H_2O+$           | 0.981 | 0.779 | 130 | 0.850 | 0.570 | 535 | (0.19)  |      |    | 0.19  |       |
| $CO_2$            | 0.091 | 0.153 | 133 | 0.124 | 0.671 | 535 | (0.148) |      |    | 0.148 |       |
| S                 | 0.067 | 0.041 | 135 | 0.034 | 0.032 | 421 | (0.111) |      |    | 0.168 | 0.111 |
| F                 | 0.023 | 0.055 | 91  | 0.030 | 0.022 | 411 | (0.102) |      |    | 0.066 | 0.102 |
| Cl                | 0.030 | 0.037 | 37  | 0.064 | 0.086 | 429 | (0.024) |      |    | 0.031 | 0.02  |
| Mg#               | 61.98 | 7.61  |     | 50.19 | 15.43 |     | 37.65   |      |    | 42.77 | 33.3  |
| Density           | 2.683 | 0.037 |     | 2.647 | 0.045 |     | 2.652   |      |    | 2.713 | 2.69  |

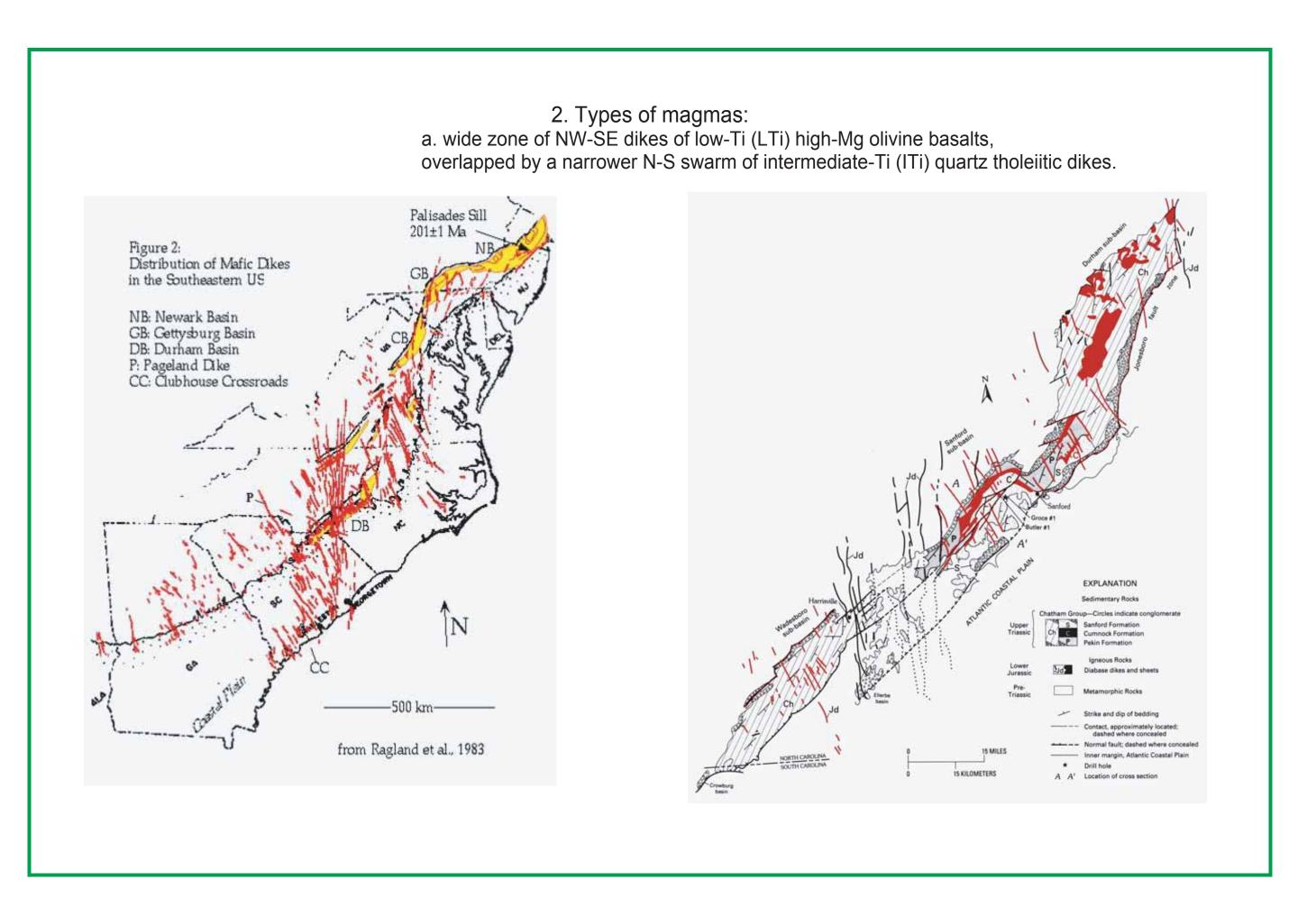

| Mg#           | 61.98         | 7.61           | 50.19             | 15.43           | 37.65                       | 42.77                   | 33.38   |
|---------------|---------------|----------------|-------------------|-----------------|-----------------------------|-------------------------|---------|
| Density       | 2.683         | 0.037          | 2.647             | 0.045           | 2.652                       | 2.713                   | 2.695   |
| LTi and IT    | i analyses a  | re from Grossi | nan et al. [1991] | ], as described | l in the text. HTi analyse  | s are from Choudhur     | [1978], |
|               | •             |                |                   |                 | 0], with volatiles in paren |                         | -       |
| and Roza v    | alues. Laki   | (Iceland) glas | s inclusion data  | are from Tho    | rdarson et al. [1996]; Roz  | za dike selvage data (  | Columbi |
| River basal   | lt group) are | from Thordar   | son and Self [19  | 9961. Compo     | nents are in weight perce   | nt FeO* is total iron   | oc FoO  |
| rer or outser | it group, are | mom morau      | Don and Don [17   | yoj. Compo      | ments are in weight perce   | iii. I co is total iioi | as reo. |

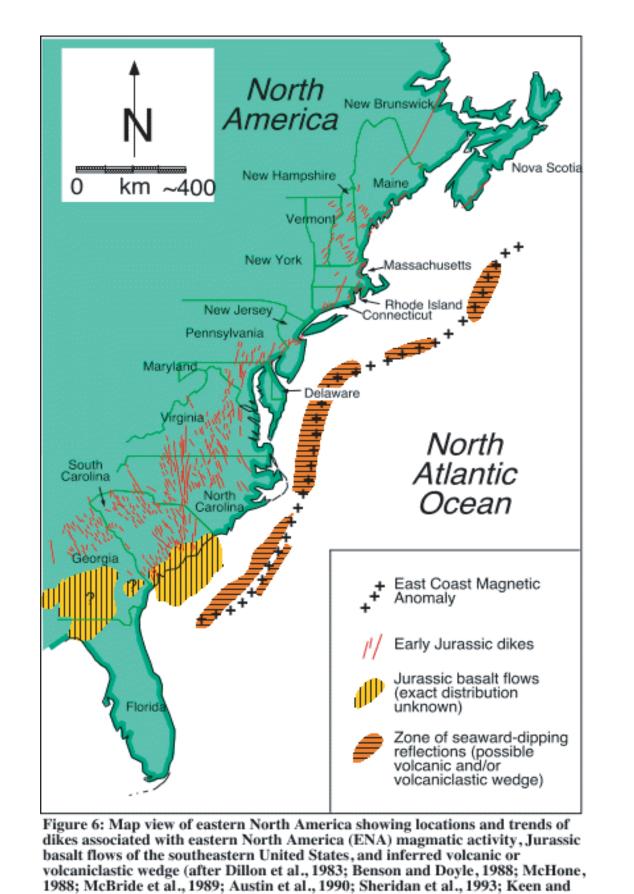
| DACAITIAMAG            | Dogin      | Doge14 T    | A man 1 2       |          | Avg. T 1  | Wal 1      |
|------------------------|------------|-------------|-----------------|----------|-----------|------------|
| BASALT LAVAS           | Basin      | Basalt Type | Area km2        |          | Avg. T km | Vol. km3   |
|                        | Fundy      | ITi         | 22500           |          | 0.4       | 9000       |
|                        | Hartford   | ITi/LTi     | 4500            |          | 0.3       | 1350       |
|                        | Newark     | ITi/LTi     | 5600            |          | 0.3       | 1680       |
|                        | Gettysburg | ITi/LTi     | 2400            |          | 0.1       | 240        |
|                        | Culpeper   | ITi/LTi     | 22500           |          | 0.2       | 4500       |
|                        | SoGeorgia  | LTi         | 100000          |          | 0.2       | 20000      |
|                        | Argana     | ITi         | 70000           |          | 0.2       | 14000      |
|                        | Offshore   | LTi         | 100000          |          | 0.1       | 10000      |
|                        | non-basin  | ITi/LTi     | 20000           |          | 0.1       | 2000       |
| LAVA TOTALS            |            |             | 347500          |          |           | 62770      |
| BASALT SILLS           | Region     | Basalt Type | Area km2        |          | Avg. T km | Vol. km3   |
|                        | NE USA     | ITi         | 17500           |          | 0.2       | 3500       |
|                        | SE USA     | LTi         | 2000            |          | 0.2       | 400        |
|                        | Africa     | ITi         | 150000          |          | 0.3       | 45000      |
|                        | SoAmerica  | ITi         | 1000000         |          | 0.5       | 500000     |
| SILL TOTALS            |            |             | 1169500         |          |           | 548900     |
| BASALT DIKES           | Number     | Length km   | Total<br>Length | Depth km | Width km  | Vol. km3   |
| Very long dikes        | 10         | 500         | 5000            | 50       | 0.05      | 12500      |
| Long dikes             | 20         | 200         | 4000            | 50       | 0.03      | 8000       |
| Medium dikes           | 100        | 50          | 5000            | 50       | 0.04      | 5000       |
| Short dikes            | 300        | 20          | 6000            | 50       | 0.02      | 3000       |
|                        | 300        | 20          | 0000            | 30       | 0.01      | 3000       |
| DIKE TOTALS            | 430        |             | 20000           |          |           | 28500      |
| EAST COAST MARGIN I.P. | Length km  | Width km    | Thick. km       | Area km2 | Vol. km3  | Aerial Vol |
|                        | 2000       | 55          | 25              | 110000   | 2750000   | 1375000    |
| EMISSIONS              | No. Amer.  | ECMIP       | Europe          | Africa   | So Amer.  | Total CAMP |
| CAMP area km2          | 1400000    | 60000       | 700000          | 4500000  | 3500000   | 10160000   |
| Lava vol km3 (1)       | 140000     | 1375000     | 70000           | 450000   | 350000    | 2385000    |
| Lava mass tons (2)     | 3.72E+14   | 3.65E+15    | 1.86E+14        | 1.20E+15 | 9.30E+14  | 6.34E+15   |
| avg CO2, wt.% (3)      | 0.117      | 0.117       | 0.117           | 0.117    | 0.117     | 0.117      |
| Total CO2 emission (4) | 2.18E+11   | 2.14E+12    | 1.09E+11        | 7.00E+11 | 5.44E+11  | 3.71E+12   |
| avg S, wt.% (3)        | 0.052      | 0.052       | 0.052           | 0.052    | 0.052     | 0.052      |
| Total S emission (4)   | 9.68E+10   | 9.50E+11    | 4.84E+10        | 3.11E+11 | 2.42E+11  | 1.65E+12   |
| avg F, wt.% (3)        | 0.035      | 0.035       | 0.035           | 0.035    | 0.035     | 0.035      |
| Total F emission (4)   | 6.51E+10   | 6.40E+11    | 3.26E+10        | 2.09E+11 | 1.63E+11  | 1.11E+12   |
| avg Cl, wt.% (3)       | 0.050      | 0.050       | 0.050           | 0.050    | 0.050     | 0.050      |
| Total Cl emission (4)  | 9.30E+10   | 9.14E+11    | 4.65E+10        | 2.99E+11 | 2.33E+11  | 1.58E+12   |
| avg H2O+, wt.% (3)     | 0.823      | 0.823       | 0.823           | 0.823    | 0.823     | 0.823      |
| Total H2O emission (4) | 1.53E+12   | 1.50E+13    | 7.66E+11        | 4.92E+12 | 3.83E+12  | 2.61E+13   |

# Table 3. Summary of environmental effects from CAMP volcanic features.


density of 2.655 metric tons/m3; (3) weighted averages (see text); (4) in metric tons, assuming 1/2 of volatiles escape.


| Feature                   | Mechanism                     | Timescale        | Geography             | Evidence                       | Effect                  |
|---------------------------|-------------------------------|------------------|-----------------------|--------------------------------|-------------------------|
| Halides (mainly Cl and F) | Exsolution from magma at vent | Months to years  | Local to regional     | Paleontology                   | Poison fauna and flora  |
| Ash and dust              | Injection into atmosphere     | Months to years  | Regional              | Stratigraphy                   | Light block and cooling |
| Water                     | Exsolution from magma         | Months to years  | Regional to global    | Sedimentology,<br>Paleontology | Wetter climate          |
| Sulfur Dioxide            | Exsolution from magma         | Years to decades | Hemispheric to global | Acidic Leaching                | Light block and cooling |
| Carbon Dioxide            | Exsolution from magma         | Centuries        | Global                | Plant stomata                  | Climatic warming        |
| Lava flows                | Eruption                      | Millennia        | Local to regional     | Stratigraphy                   | Habitat<br>destruction  |





Timing of CAMP magmatism in Eastern North America:

Potential for Causing the Tr-J Boundary Extinction

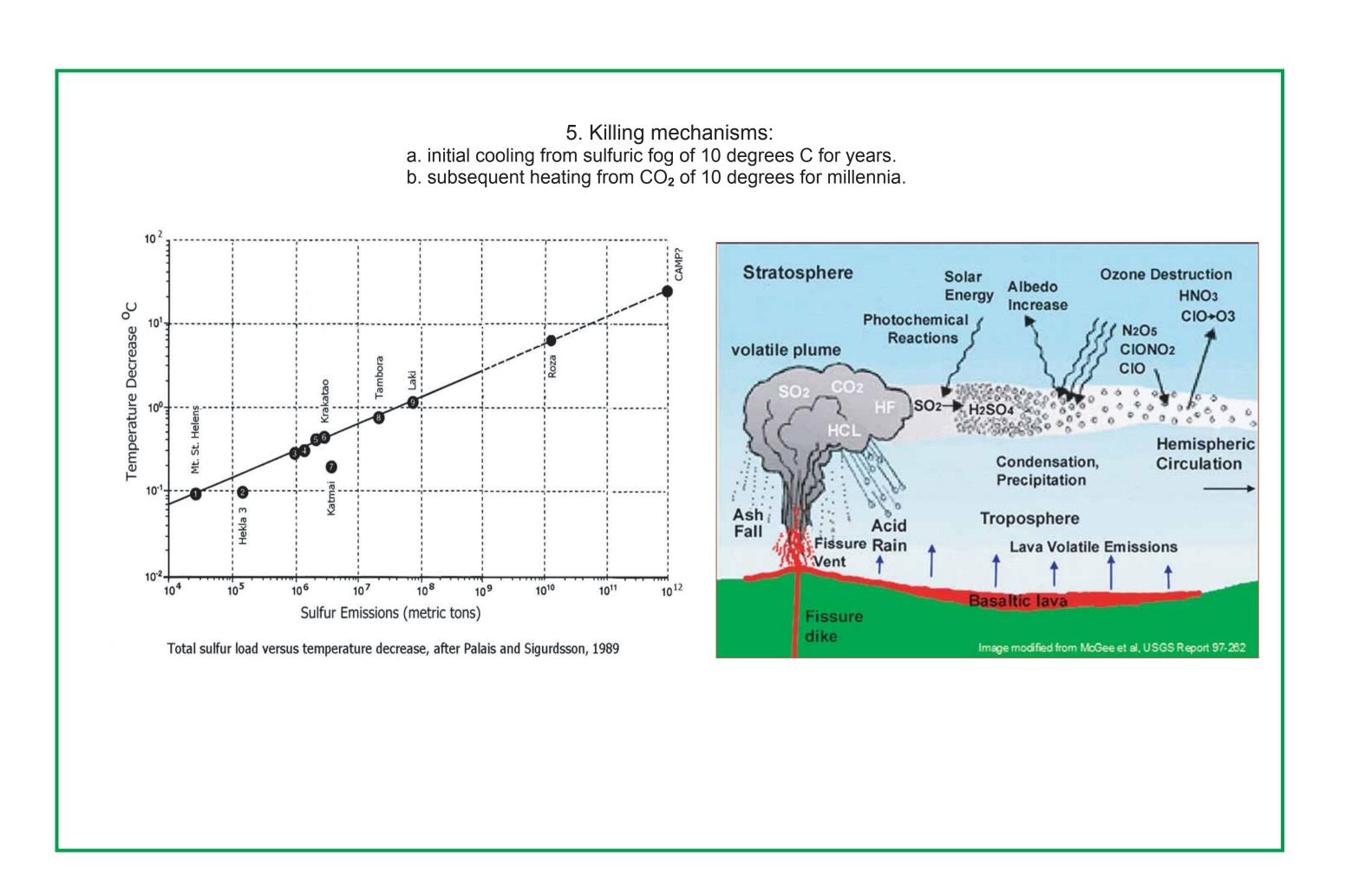








# RADIOMETRIC AGES


| LTi Magmas                                                               | 199 ± 2 Ma 🗆 | Nomade et al., 2006<br>Beutel et al., 2005<br>Hames et al., 2000                  |
|--------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------|
| ITi Magmas  Northern, Eastern, Southern □  CAMP (all areas except deep-□ | 199 ± 2 Ma   | Nomade et al., 2006<br>Marzoli et al., 2004                                       |
| south USA)                                                               |              | Marzoli et al.,1999<br>Deckart et al., 1997<br>McHone, 1996                       |
| HTi Magmas                                                               | 193± 3 Ma 🗆  | Nomade et al., 2006<br>de Min et al., 2003<br>Baksi, 2003<br>Deckart et al., 1997 |

# STRATIGRAPHIC AGES

Three episodes within ☐ Olsen, 1997 Northern CAMP (Northeastern ☐ 600,000 years, starting USA, Northwestern Africa)□ >10,000 years after the Tr-J boundary. Some are older than ITi magmas, [

Implication: the actual spread of magmatic activity for each group is much narrower (± 0.6 Ma) than the precision of radiometric dates (± 2-3 Ma). Thus, radiometric dates are not capable of distinguishing between the ages of LTi and ITi magmatic activity, which may be only a few hundred thousand years apart, and may also overlap in age.

also some possibly contemporaneous.

